

Kidney Function Animation

http://www.biologymad.com/resources/kidney.swf

Urine Formation

Three (3) things are involved during urine formation.

Filtration – blood an bodily fluids are filtered through a selectively membrane.
 Fluids from blood →

- 2. Reabsorption transfer of glomerular filtrate from nephron→
- Secretion movement of materials such as ammonia or some drugs from blood →

Filtration

Where?

-very localized in the _____

and _____

How?

in the capillaries forces blood plasma through glomerulus walls into the Bowmans capsule thus filtering out water and dissolved solutes from the blood

What?

-Blood cells remain behind in glomerulus capillaries while filtration squeezes out

into the renal tube through the Bowman's capsule

Reabsorption

How?

-selective reabsorption through and transport

-occurs until a

In selective reabsorption, sodium, amino acids and glucose Glomerulus are reabsorbed from the filtrate back into the blood Filtrate capillary \bigcirc \cap Glucose Sodium Amino acids

of a substance is reached (i.e. the maximum amount of a material that can be moved across a nephron)

WATCH YOUR Ps

Secretion! This typically contains: How? Uric acid 0.6 g -movement of wastes Bicarbonate ions 1.2 g from blood \rightarrow Average urine Creatinine 2.7 q volume per day for an adult = Potassium ions 3.2 g by 1.4 litres Sodium ions 4.1 g active transport Chloride ions 6.6 g What? Urea[®] 25.5 g -get rid of containing waste, excess "nitrogenous breakdown product of protein metabolism H⁺ and minerals, even some drugs

Site	Description of process	Substances transported
 glomerulus and Bowman's capsule 	 Filtration of water and dissolved solutes occurs as blood is forced through walls of glomerulus into Bowman's capsule by fluid pressure in capillaries. 	 sodium ions (Na⁺), chloride ions (Cl⁻), water (H₂O), hydrogen ions (H⁺), glucose, amino acids, vitamins, minerals, urea, uric acid
2. proximal tubule	 Selective reabsorption of nutrients from filtrate back into blood by active and passive transport. Within proximal tubule, pH is controlled by secretion of hydrogen ions (H⁺) and reabsorption of bicarbonate ions (HCO₃⁻). 	 bicarbonate ions (HCO₃⁻), salt (NaCl), water (H₂O), potassium ions (K⁺), hydrogen ions (H⁺), ammonia (NH₃), glucose, amino acids, vitamins, urea
 descending limb of loop of Henle 	 Descending limb of loop of Henle is permeable to water, resulting in loss of water from filtrate by osmosis. Salt (NaCl) becomes concentrated in filtrate as descending limb penetrates inner medulla of kidney. 	• water (H ₂ O)
 ascending limb of loop of Henle 	 Thin segment of ascending limb of loop of Henle is permeable to salt, resulting in diffusion of salt out of ascending limb. Salt continues to pass from filtrate to interstitial fluid in thick segment of ascending limb. 	• salt (NaCl)
5. distal tubule	 Selective reabsorption of nutrients from blood into nephron by active transport. Distal tubule helps regulate potassium (K⁺) and salt (NaCl) concentration of body fluids. As in proximal tubule, pH is controlled by tubular secretion of hydrogen ions (H⁺) and reabsorption of bicarbonate ions (HCO₃⁻). 	 salt (NaCl), potassium ions (K⁺), water (H₂O), hydrogen ions (H⁺), bicarbonate ions (HCO₃⁻), uric acid, ammonia (NH₃)
6. collecting duct	Urine formation.	 water (H₂O), salt (NaCl), urea, uric acid, minerals

Let's look at that kidney function animation again

http://www.biologymad.com/resources/kidney.swf

WATER BALANCE

drink more = pee more sweat more = pee less

But its not that easy! How does our body know when to produce more/less urine?

Antidiuretic Hormone (ADH)

-causes the kidneys to ______ water reabsorption making more concentrated urine (very yellow) - hypothalamus sends signal to pituitary to _____ or

ADH secretion based on the body's osmotic pressure

HOW DID THE HYPOTHALAMUS KNOW!?

located in the hypothalamus detect changes in osmotic pressure of the blood and surrounding extracellular fluids (ECF)

Ex. If you sweat a lot or decrease your fluid intake, the solutes in the blood become very concentrated thus ______ osmotic pressure and causing water to move into the bloodstream.

Water moving out of the bloodstream causes the hypothalamus to _____

GO KIDNEYS GO! ***Optimal body pH is between 7.3 and 7.5***

 $H_2O + CO_2 \longrightarrow H_2CO_3 \longrightarrow HCO_3^- + H^+$, carbonic acid bicarbonate ion ,

carbonic acid/bicarbonate buffer

Bicarbonate ions, HCO3⁻, eliminate the excess H⁺ ions, preventing a change in pH.

